experiment
Experiment
add_experiment_data
classmethod
add_experiment_data(experiment_id: str, data: pd.DataFrame) -> None
Add evaluation data to an experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_id
|
str
|
ID of the experiment. |
required |
data
|
DataFrame
|
Data to be added. |
required |
Note
This method does not update existing data. It only adds new data. If you want to update existing data, use upsert_data instead.
create
classmethod
create(name: str, schema: ExperimentSchema, experiment_data: pd.DataFrame, experiment_type: ExperimentType, metrics_configuration: Dict[str, MetricConfiguration], key_experiment_metric: Optional[str] = None) -> ExperimentDetails
Create a new experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name for the experiment. |
required |
schema
|
ExperimentSchema
|
Schema of the experiment. Typically, created using Schema.from_df. |
required |
experiment_data
|
DataFrame
|
Data to be used for the experiment. |
required |
experiment_type
|
ExperimentType
|
Type of the experiment. |
required |
metrics_configuration
|
Dict[str, MetricConfiguration]
|
Configuration for each metric to be used in the experiment. |
required |
key_experiment_metric
|
Optional[str]
|
Optional metric to be used as the key experiment metric. |
None
|
Returns:
Type | Description |
---|---|
ExperimentDetails
|
Detailed about the experiment once it has been created. |
delete
classmethod
delete(experiment_id: str) -> None
Delete an experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_id
|
str
|
ID of the experiment to delete. |
required |
get
classmethod
get(experiment_id: str) -> ExperimentDetails
Get details for an experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_id
|
str
|
ID of the experiment to get details for. |
required |
Returns:
Type | Description |
---|---|
ExperimentDetails
|
Detailed information about the experiment. |
get_data_history
classmethod
get_data_history(experiment_id: str) -> List[DataSourceEvent]
Get the data history for an experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_id
|
str
|
ID of the experiment. |
required |
Returns:
Type | Description |
---|---|
List[DataSourceEvent]
|
List of events related to reference data for the experiment. |
list
classmethod
list(name: Optional[str] = None, experiment_type: Optional[ExperimentType] = None) -> List[ExperimentSummary]
List defined experiments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
Optional[str]
|
Optional name filter. |
None
|
experiment_type
|
Optional[ExperimentType]
|
Optional problem type filter. |
None
|
Returns:
Type | Description |
---|---|
List[ExperimentSummary]
|
List of models that match the provided filter criteria. |
upsert_experiment_data
classmethod
upsert_experiment_data(experiment_id: str, data: pd.DataFrame) -> None
Add or update analysis data for an experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_id
|
str
|
ID of the model. |
required |
data
|
DataFrame
|
Data to be added/updated. |
required |
Note
This method compares existing data with the new data to determine which rows to update and which to add. If you are certain you are only adding new data, it is recommended to use add_experiment_data instead for better performance.
ExperimentDetails
Bases: ExperimentSummary
Detailed information about an experiment.
Attributes:
Name | Type | Description |
---|---|---|
latestRun |
Optional[RunSummary]
|
The currently active run or latest run performed for the experiment.
This is |
ExperimentSummary
Bases: TypedDict
Summary of an experiment.
Attributes:
Name | Type | Description |
---|---|---|
id |
str
|
Unique identifier of the experiment (generated by NannyML Cloud when an experiment is created). |
name |
str
|
User-defined name of the experiment. |
createdAt |
datetime
|
Timestamp when the experiment was created. |
MetricConfiguration
Bases: TypedDict
Configuration for a metric in an experiment.
Attributes:
Name | Type | Description |
---|---|---|
enabled |
bool
|
Whether the metric is enabled or disabled. |
rope_lower_bound |
float
|
Lower bound of the region of practical equivalence (ROPE) for the metric. |
rope_upper_bound |
float
|
Upper bound of the region of practical equivalence (ROPE) for the metric. |
hdi_width |
float
|
Required width of the highest density interval (HDI) for the metric before evaluating the hypothesis. |