Welcome to the NannyML Cloud SDK Docs
This page provides an API reference for the NannyML Cloud SDK, generated directly from the code. For tutorials and guides, please refer to our gitbook pages.
Installing
Currently the package is private, which means you cannot install it via the regular python channels. Instead, you'll have to clone the repository and install it from your local copy.
git clone https://github.com/NannyML/nannyml-cloud-sdk.git
cd nannyml-cloud-sdk
pip install .
Authentication
To use the NannyML Cloud SDK you need to provide the URL of your NannyML Cloud instance and an API token to authenticate. You can obtain an API token on the settings page of your NannyML Cloud instance.
In code:
import nannyml_cloud_sdk as nml_sdk
nml_sdk.url = "https://beta.app.nannyml.com"
nml_sdk.api_token = r"api token goes here"
Using environment variables:
import nannyml_cloud_sdk as nml_sdk
import os
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
Note
We recommend using an environment variable for the API token. This prevents accidentally leaking any token associated with your personal account when sharing code.
Examples
Model monitoring
This snippet provides an example of how you can create a model in NannyML Cloud to start monitoring it.
import nannyml_cloud_sdk as nml_sdk
import os
import pandas as pd
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
# Load a NannyML binary classification dataset to use as example
reference_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_sample_reference.csv')
analysis_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_sample_analysis.csv')
target_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_sample_analysis_gt.csv')
print(reference_data.head())
# Inspect schema from dataset and apply overrides
schema = nml_sdk.monitoring.Schema.from_df(
'BINARY_CLASSIFICATION',
reference_data,
target_column_name='work_home_actual',
ignore_column_names=('period'),
)
# Create model
model = nml_sdk.monitoring.Model.create(
name='Example model',
schema=schema,
chunk_period='MONTHLY',
reference_data=reference_data,
analysis_data=analysis_data,
target_data=target_data,
main_performance_metric='F1',
)
print("Model", model['id'], "created at", model['createdAt'])
Note
The reference dataset is inspected to determine the model schema. NannyML Cloud uses heuristics to automatically identify most columns, but some columns may not be automatically identified. In this case the target column is not identified, so we manually define work_home_actual
as the target column.
Once a model has been set up in NannyML Cloud, you could use the snippet below to add more data and ensure continuous monitoring of your model.
import nannyml_cloud_sdk as nml_sdk
import os
import pandas as pd
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
# Find model in NannyML Cloud by name
model, = nml_sdk.monitoring.Model.list(name='Example model')
# Add new inferences to NannyML Cloud
new_inferences = pd.DataFrame()
nml_sdk.monitoring.Model.add_analysis_data(model['id'], new_inferences)
# If you have delayed access to ground truth, you can add them to NannyML Cloud
# later. This will match analysis & target datasets using an identifier column.
delayed_ground_truth = pd.DataFrame()
nml_sdk.monitoring.Model.add_analysis_target_data(model['id'], delayed_ground_truth)
# Trigger analysis of the new data
nml_sdk.monitoring.Run.trigger(model['id'])
Model evaluation
This snippet provides an example of how you can set up model evaluation in NannyML Cloud.
You can configure each of the available performance metrics by providing an optional value for ROPE and HDI width.
If a None
is provided, NannyML will calculate a sensible default during the first evaluation run.
import nannyml_cloud_sdk as nml_sdk
import os
import pandas as pd
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
# Load a NannyML binary classification dataset to use as example
reference_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_car_loan_reference.csv')
analysis_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_car_loan_analysis.csv')
target_data = pd.read_csv('https://github.com/NannyML/nannyml/raw/main/nannyml/datasets/data/synthetic_car_loan_analysis_target.csv')
# The evaluation data will be a combination of analysis and target datasets. We'll only use the first 1000 rows for now.
evaluation_data = analysis_data.merge(target_data, on='id').head(1000)
print(reference_data.head())
# Inspect schema from dataset and apply overrides
schema = nml_sdk.model_evaluation.Schema.from_df(
'BINARY_CLASSIFICATION',
reference_data,
target_column_name='repaid',
)
# Create model
model = nml_sdk.model_evaluation.Model.create(
name='from_sdk',
schema=schema,
reference_data=reference_data,
evaluation_data=evaluation_data,
metrics_configuration={
'F1': {
'enabled': True,
'rope_lower_bound': 0.8,
'rope_upper_bound': 0.9,
'hdi_width': 0.01
},
'ACCURACY': {
'enabled': True,
'rope_lower_bound': None,
'rope_upper_bound': None,
'hdi_width': None
},
},
key_performance_metric='F1',
hypothesis='MODEL_PERFORMANCE_NO_WORSE_THAN_REFERENCE',
classification_threshold=0.5,
)
print("Model", model['id'], "created at", model['createdAt'])
# Now trigger the model evaluation run with our first 1000 rows of evaluation data
nml_sdk.model_evaluation.Run.trigger(model['id'])
Now we'll add the next set of evaluation data and trigger another evaluation run.
import nannyml_cloud_sdk as nml_sdk
import os
import pandas as pd
evaluation_data = analysis_data.join(target_data, on='id').iloc[1000:2000]
# Retrieve the model that was created earlier, using the name as a filter.
model, = nml_sdk.model_evaluation.Model.list(name='from_sdk')
print(model)
# Adding the new evaluation data to the model
nml_sdk.model_evaluation.Model.add_evaluation_data(model_id=model['id'], data=evaluation_data)
# Trigger the model evaluation run to include the latest set of evaluation data
nml_sdk.model_evaluation.Run.trigger(model['id'])
Experiments
This snippet provides an example of how you can set up an A/B-testing experiment in NannyML Cloud.
You can configure each of the available metrics by providing a value for ROPE and HDI width.
import nannyml_cloud_sdk as nml_sdk
from pprint import pprint
import pandas as pd
import os
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
experiment_data = pd.DataFrame({
'variable': ['RJ45', 'RJ45', 'FOO', 'FOO'],
'group': ['control', 'treatment', 'control', 'treatment'],
'success_count': [50, 30, 25, 10],
'fail_count': [1, 2, 2, 0],
'random': [1, 2, 5, 7],
})
metrics = list(experiment_data['variable'].unique())
schema = nml_sdk.experiment.Schema.from_df(df=experiment_data, metric_column_name='variable')
pprint(schema)
experiment = nml_sdk.experiment.Experiment.create(
name='experiment (SDK)',
schema=schema,
experiment_type='A_B_TESTING',
experiment_data=experiment_data,
key_experiment_metric='renewed',
metrics_configuration={
metric: {
"rope_lower_bound": 0.80,
"rope_upper_bound": 0.90,
"hdi_width": 0.01,
"enabled": True,
} for metric in metrics
}
)
pprint(experiment)
nml_sdk.experiment.Run.trigger(experiment['id'])
Now we'll add the next set of experiment data and trigger another evaluation run.
import nannyml_cloud_sdk as nml_sdk
import os
import pandas as pd
nml_sdk.url = os.environ['NML_SDK_URL']
nml_sdk.api_token = os.environ['NML_SDK_API_TOKEN']
experiment_data = pd.DataFrame({
'variable': ['RJ45', 'RJ45', 'FOO', 'FOO'],
'group': ['control', 'treatment', 'control', 'treatment'],
'success_count': [27, 35, 19, 31],
'fail_count': [1, 5, 12, 12],
'random': [1, 2, 5, 7],
})
experiment, = nml_sdk.experiment.Experiment.list(name='experiment (SDK)')
nml_sdk.experiment.Experiment.add_experiment_data(experiment['id'], experiment_data)
nml_sdk.experiment.Run.trigger(experiment['id'])